on Toshareproject.it - curated by Bruce Sterling
https://arxiv.org/pdf/2412.17799
References
Wendy Aguilar, Guillermo Santamar´ıa-Bonfil, Tom Froese, and Carlos Gershenson. The past, present, and future of artificial life. Frontiers in Robotics and AI, 1:8, 2014.
Jyrki Alakuijala, James Evans, Ben Laurie, Alexander Mordvintsev, Eyvind Niklasson, Ettore Randazzo,
Luca Versari, et al. Computational life: How well-formed, self-replicating programs emerge from simpleinteraction. arXiv preprint arXiv:2406.19108, 2024.
Philip W Anderson. More is different: Broken symmetry and the nature of the hierarchical structure of science. Science, 177(4047):393–396, 1972.
Mark A Bedau, John S McCaskill, Norman H Packard, Steen Rasmussen, Chris Adami, David G Green,
Takashi Ikegami, Kunihiko Kaneko, and Thomas S Ray. Open problems in artificial life. Artificial life, 6 (4):363–376, 2000.
Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.
Bert Wang-Chak Chan. Lenia-biology of artificial life. arXiv preprint arXiv:1812.05433, 2018.
Bert Wang-Chak Chan. Lenia and expanded universe. In Artificial Life Conference Proceedings 32, pages
221–229. MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2020.
Bert Wang-Chak Chan. Towards large-scale simulations of open-ended evolution in continuous cellular
automata. In Proceedings of the Companion Conference on Genetic and Evolutionary Computation,
pages 127–130, 2023.
Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial intelligence. arXiv preprint arXiv:1905.10985, 2019.
Miles Cranmer, Alvaro Sanchez Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel, and
Shirley Ho. Discovering symbolic models from deep learning with inductive biases. Advances in neural
information processing systems, 33:17429–17442, 2020.
Katherine Crowson, Stella Biderman, Daniel Kornis, Dashiell Stander, Eric Hallahan, Louis Castricato, and Edward Raff. Vqgan-clip: Open domain image generation and editing with natural language guidance. In European Conference on Computer Vision, pages 88–105. Springer, 2022.
Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch, and
Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment design. Advances in neural information processing systems, 33:13049–13061, 2020.
Maxence Faldor and Antoine Cully. Toward artificial open-ended evolution within lenia using quality-
diversity. arXiv preprint arXiv:2406.04235, 2024.
Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via models of
human notions of interestingness with environments programmed in code. arXiv preprint arXiv:2405.15568, 2024.
Martin J Falk, Finnegan D Roach, William Gilpin, and Arvind Murugan. Curiosity-driven search for novel nonequilibrium behaviors. Physical Review Research, 6(3):033052, 2024.
Kevin Frans, Lisa Soros, and Olaf Witkowski. Clipdraw: Exploring text-to-drawing synthesis through
language-image encoders. Advances in Neural Information Processing Systems, 35:5207–5218, 2022.
Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine learning.
arXiv preprint arXiv:2210.02410, 2022.
Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and Phillip Isola.
Dreamsim: Learning new dimensions of human visual similarity using synthetic data. arXiv preprint
arXiv:2306.09344, 2023.
Mathematical Games. The fantastic combinations of john conway’s new solitaire game “life” by martin
gardner. Scientific American, 223:120–123, 1970.
David Ha and Yujin Tang. Collective intelligence for deep learning: A survey of recent developments.
Collective Intelligence, 1(1):26339137221114874, 2022.
Vincent Herrmann, Louis Kirsch, and J¨urgen Schmidhuber. Learning one abstract bit at a time through
self-invented experiments encoded as neural networks. arXiv preprint arXiv:2212.14374, 2022.
Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge Shi, Tom
Schaul, and Tim Rocktaschel. Open-endedness is essential for artificial superhuman intelligence. arXiv
preprint arXiv:2406.04268, 2024.
Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation hypothesis.
arXiv preprint arXiv:2405.07987, 2024.
Minqi Jiang, Tim Rockt¨aschel, and Edward Grefenstette. General intelligence requires rethinking exploration. Royal Society Open Science, 10(6):230539, 2023.
John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Z´ıdek, Anna Potapenko, et al. Highly accurate protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.
Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.
Jacek Karwowski, Oliver Hayman, Xingjian Bai, Klaus Kiendlhofer, Charlie Griffin, and Joar Skalse. Goodhart’s law in reinforcement learning. arXiv preprint arXiv:2310.09144, 2023.
Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models for ro-
bust image manipulation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2426–2435, 2022.
Andrei N Kolmogorov. On tables of random numbers. Theoretical Computer Science, 207(2):387–395, 1998. Christopher Langton. Artificial life. 1992.
Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for novelty
alone. Evolutionary computation, 19(2):189–223, 2011a.
Joel Lehman and Kenneth O Stanley. Evolving a diversity of virtual creatures through novelty search and local competition. In Proceedings of the 13th annual conference on Genetic and evolutionary computation, pages 211–218, 2011b.
Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley. Evolution
through large models. In Handbook of Evolutionary Machine Learning, pages 331–366. Springer, 2023.
Seth Lloyd. Measures of complexity: a nonexhaustive list. IEEE Control Systems Magazine, 21(4):7–8, 2001.
Chris Lu, Michael Beukman, Michael Matthews, and Jakob Foerster. Jaxlife: An open-ended agentic simulator. In ALIFE 2024: Proceedings of the 2024 Artificial Life Conference. MIT Press, 2024a.
Chris Lu, Samuel Holt, Claudio Fanconi, Alex J Chan, Jakob Foerster, Mihaela van der Schaar, and
Robert Tjarko Lange. Discovering preference optimization algorithms with and for large language models.
arXiv preprint arXiv:2406.08414, 2024b.
Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist:
Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292, 2024c.
Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language
models. arXiv preprint arXiv:2310.12931, 2023.
Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.
Melanie Mitchell. Complexity: A guided tour. Oxford University Press, 2009.
Melanie Mitchell, Peter Hraber, and James P Crutchfield. Revisiting the edge of chaos: Evolving cellular automata to perform computations. arXiv preprint adap-org/9303003, 1993.
Tom Mohr. How particle life emerges from simplicity. https://www.youtube.com/watch?v=p4YirERTVF0 Accessed: 2024-09-30.
Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. Growing neural cellular
automata. Distill, 5(2):e23, 2020.
Alexander Mordvintsev, Eyvind Niklasson, and Ettore Randazzo. Particle lenia and the energy-based formulation. 2022 Cited on, page 49, 2022.
Francisco Mota, Scott Aaronson, Lu´ıs Antunes, and Andr´e Souto. Sophistication as randomness deficiency.
In Descriptional Complexity of Formal Systems: 15th International Workshop, DCFS 2013, London, ON,
Canada, July 22-25, 2013. Proceedings 15, pages 172–181. Springer, 2013.
Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.
Eleni Nisioti, Claire Glanois, Elias Najarro, Andrew Dai, Elliot Meyerson, Joachim Winther Pedersen,
Laetitia Teodorescu, Conor F Hayes, Shyam Sudhakaran, and Sebastian Risi. From text to life: On
the reciprocal relationship between artificial life and large language models. In Artificial Life Conference Proceedings 36, volume 2024, page 39. MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2024.
Charles Ofria and Claus O Wilke. Avida: A software platform for research in computational evolutionary biology. Artificial life, 10(2):191–229, 2004.
Maxime Oquab, Timoth´ee Darcet, Th´eo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.
Norman H Packard. Adaptation toward the edge of chaos. Dynamic patterns in complex systems, 212:
293–301, 1988.
Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward Grefen-
stette, and Tim Rockt¨aschel. Evolving curricula with regret-based environment design. In International Conference on Machine Learning, pages 17473–17498. PMLR, 2022.
Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In International conference on machine learning, pages 2778–2787. PMLR, 2017.
Erwan Plantec, Gautier Hamon, Mayalen Etcheverry, Pierre-Yves Oudeyer, Cl´ement Moulin-Frier, and Bert Wang-Chak Chan. Flow-lenia: Towards open-ended evolution in cellular automata through mass conservation and parameter localization. In Artificial Life Conference Proceedings 35, volume 2023, page 131.
MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2023.
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR, 2021.
Ettore Randazzo and Alexander Mordvintsev. Biomaker ca: a biome maker project using cellular automata.
arXiv preprint arXiv:2307.09320, 2023.
Chris Reinke, Mayalen Etcheverry, and Pierre-Yves Oudeyer. Intrinsically motivated discovery of diverse patterns in self-organizing systems. arXiv preprint arXiv:1908.06663, 2019.
Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 25–34, 1987.
Sebastian Risi. The future of artificial intelligence is self-organizing and self-assembling. sebastianrisi. com, page 14, 2021.
Raymond Ros and Nikolaus Hansen. A simple modification in cma-es achieving linear time and space
complexity. In International conference on parallel problem solving from nature, pages 296–305. Springer,
2008.
J¨urgen Schmidhuber. What’s interesting? Technical Report IDSIA-35-97, IDSIA, 1997.
ftp://ftp.idsia.ch/pub/juergen/interest.ps.gz; extended abstract in Proc. Snowbird’98, Utah, 1998; see also
J¨urgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually searching
for the simplest still unsolvable problem. Frontiers in psychology, 4:313, 2013.
Jimmy Secretan, Nicholas Beato, David B D’Ambrosio, Adelein Rodriguez, Adam Campbell, Jeremiah T
Folsom-Kovarik, and Kenneth O Stanley. Picbreeder: A case study in collaborative evolutionary explo-
ration of design space. Evolutionary computation, 19(3):373–403, 2011.
Abhishek Sharma, D´aniel Cz´egel, Michael Lachmann, Christopher P Kempes, Sara I Walker, and Leroy
Cronin. Assembly theory explains and quantifies selection and evolution. Nature, 622(7982):321–328,
2023.
David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815, 2017.
Sims, Karl. Evolved Virtual Creatures. ACM SIGGRAPH, 1994.
Lisa Soros and Kenneth Stanley. Identifying necessary conditions for open-ended evolution through the artificial life world of chromaria. In Artificial Life Conference Proceedings, pages 793–800. MIT Press One
Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . , 2014.
Kenneth O Stanley and Joel Lehman. Why greatness cannot be planned: The myth of the objective.
Springer, 2015.
Kenneth O Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last grand challenge you’ve never heard of. While open-endedness could be a force for discovering intelligence, it could also be a component of AI itself, 2017.
Susan Stepney and Simon Hickinbotham. On the open-endedness of detecting open-endedness. Artificial
Life, 30(3):390–416, 2024.
Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural mmo: A massively multiagent game
environment for training and evaluating intelligent agents. arXiv preprint arXiv:1903.00784, 2019.
Yunlong Tang, Jing Bi, Siting Xu, Luchuan Song, Susan Liang, Teng Wang, Daoan Zhang, Jie An, Jingyang Lin, Rongyi Zhu, et al. Video understanding with large language models: A survey. arXiv preprint
arXiv:2312.17432, 2023.
Yingtao Tian and David Ha. Modern evolution strategies for creativity: Fitting concrete images and abstract concepts. In International conference on computational intelligence in music, sound, art and design (part of evostar), pages 275–291. Springer, 2022.
Graham Todd, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green, and Julian Togelius. Level
generation through large language models. In Proceedings of the 18th International Conference on the
Foundations of Digital Games, pages 1–8, 2023.
Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry without
human demonstrations. Nature, 625(7995):476–482, 2024.
Jeffrey Ventrella. Clusters (lifelike particle systems). https://www.ventrella.com/Clusters/, 2017. Accessed: 2024-09-30.
Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley. Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning challenges and their solutions. In International conference on machine learning, pages 9940–9951. PMLR, 2020.
Stephen Wolfram. A class of models with the potential to represent fundamental physics. arXiv preprint
arXiv:2004.08210, 2020.
Stephen Wolfram and M Gad-el Hak. A new kind of science. Appl. Mech. Rev., 56(2):B18–B19, 2003.
Mirek W´ojtowicz. Cellular automaton rules lexicon — family: Life, 2001. URL http://www.mirekw.com/
ca/rullex_life.html. Accessed: 2024-12-07.
Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze, Luke Zettle-
moyer, and Christoph Feichtenhofer. Videoclip: Contrastive pre-training for zero-shot video-text understanding. arXiv preprint arXiv:2109.14084, 2021.
Larry Yaeger et al. Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior or poly world: Life in a new context. In SANTA FE INSTITUTE STUDIES IN THE SCIENCES OF COMPLEXITY-PROCEEDINGS VOLUME-, volume 17, pages 263–263. ADDISON-WESLEY PUB-
LISHING CO, 1994.
Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of human
notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 586–595, 2018.